## Petrophysics and Log Analysis course Presenter: Sherif Farag

https://www.linkedin.com/in/sheriffarag/



Course components can be combined as required based on attendees profile and time available One "day" represents about 6 hours of training, 4-5 hours of instruction depending on the subject with 1-2 hours for practical work and Q&A

| # | Title                                                                                         | Target audience                                                                                         | Description                                                                                                                                                                                                                                                                                                                                                          | Length                                            |
|---|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| 1 | Introduction to Log Analysis                                                                  | Non-specialists (Geologists, Reservoir<br>Engineers, Managers, etc.)<br>Young Professionals<br>Students | <ol> <li>Limitations and range of applications of different logs</li> <li>Compute shale volume, porosity, fluid saturation and estimate permeability</li> <li>Understand the accuracy of these results</li> <li>Hands-on examples and exercises (public or customer-provided data)</li> </ol>                                                                        | 1 or 2 days<br>depending<br>on level of<br>detail |
| 2 | Introduction to Petrophysics                                                                  | Non-specialists<br>Young Professionals<br>Students                                                      | <ol> <li>Petrophysical rock types (flow units) - a lot of misunderstanding and bad practice to navigate through here</li> <li>Saturation-height basics</li> <li>Relative permeability basics</li> <li>Permeability transforms from static measurements</li> <li>Hands-on examples and exercises (public or customer-provided data)</li> </ol>                        | 1 or 2 days<br>depending<br>on level of<br>detail |
| 3 | Nuclear Magnetic Resonance Logs -<br>Principles and Applications                              | Petrophysicists / Geoscientists                                                                         | <ol> <li>Measurement principle and range of application</li> <li>Irreducible water saturation, total porosity, NMR permeability (commonly misunderstood)</li> <li>Capillary pressure</li> <li>Rock typing</li> <li>Fluid typing</li> <li>Examples and exercises (public or customer-provided data)</li> </ol>                                                        | 1 or 2 days<br>depending<br>on level of<br>detail |
| 4 | Formation evaluation in clastics (porous shaly sands)                                         | Petrophysicists / Geoscientists                                                                         | <ol> <li>Mineralogy in clastics</li> <li>Texture and rock quality from logs (rock typing)</li> <li>Log-based solutions: NMR, Spectroscopy, Sigma etc.</li> <li>Examples and exercises (public or customer-provided data)</li> </ol>                                                                                                                                  | 1 day                                             |
| 5 | Formation evaluation in carbonates<br>(porous carbonates, not highly<br>fractured)            | Petrophysicists / Geoscientists                                                                         | <ol> <li>1- Carbonates present very different challenges in different areas</li> <li>2- Texture and rock quality variation (rock typing) difficult to define on logs</li> <li>3- Log-based solutions: NMR, Dielectric logs, Sigma etc.</li> <li>4- Examples and exercises (public or customer-provided data)</li> </ol>                                              | 1 day                                             |
| 6 | Cased Hole Formation Evaluation                                                               | Petrophysicists / Geoscientists                                                                         | <ol> <li>Measurements which can be used through casing</li> <li>Log analysis in high uncertainty environments</li> <li>Examples and exercises (public or customer-provided data)</li> </ol>                                                                                                                                                                          | 1 day                                             |
| 7 | Formation Evaluation in Low Porosity<br>and Fractured Reservoirs                              | Petrophysicists / Geoscientists                                                                         | 1- Uncertainty in log data<br>2- Uncertainty in log analysis<br>3- Fracture detection and evaluation<br>4- Examples and exercises (public or customer-provided data)                                                                                                                                                                                                 | 1 day                                             |
| 8 | Formation evaluation in low resistivity<br>contrast (laminated and fresh water<br>formations) | Petrophysicists / Geoscientists                                                                         | <ol> <li>When resistivity fails to accurately determine fluid saturation</li> <li>Log-based solutions: NMR, Triaxial Resistivity, Dielectric logs, Sigma, Neutron spectroscopy etc.</li> <li>Techniques for re-evaluating existing data to get better results, 2D formation evaluation</li> <li>Examples and exercises (public or customer-provided data)</li> </ol> | 1 day                                             |